mirror of
https://git.freebsd.org/src.git
synced 2026-01-16 23:02:24 +00:00
Now that the conversion of rpcsec_tls/client + rpc.tlsclntd(8) to the netlink(4) socket as RPC transport started using kernel socket pointer as a reliable cookie, we can shave off quite a lot of complexity. We will utilize the same kernel-generated cookie in all RPCs. And the need for the daemon generated cookie in the form of timestamp+sequence vanishes. We also stop passing notion of 'process position' from userland to kernel. The TLS handshake parallelism to be reimplemented in the daemon without any awareness about that in the kernel. This time bump the RPC version. Reviewed by: rmacklem Differential Revision: https://reviews.freebsd.org/D48566
631 lines
21 KiB
C
631 lines
21 KiB
C
/* $NetBSD: svc.h,v 1.17 2000/06/02 22:57:56 fvdl Exp $ */
|
|
|
|
/*-
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 2009, Sun Microsystems, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
* - Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* - Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* - Neither the name of Sun Microsystems, Inc. nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* svc.h, Server-side remote procedure call interface.
|
|
*
|
|
* Copyright (C) 1986-1993 by Sun Microsystems, Inc.
|
|
*/
|
|
|
|
#ifndef _RPC_SVC_H
|
|
#define _RPC_SVC_H
|
|
#include <sys/cdefs.h>
|
|
|
|
#include <sys/queue.h>
|
|
#include <sys/_lock.h>
|
|
#include <sys/_mutex.h>
|
|
#include <sys/_sx.h>
|
|
#include <sys/condvar.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
/*
|
|
* This interface must manage two items concerning remote procedure calling:
|
|
*
|
|
* 1) An arbitrary number of transport connections upon which rpc requests
|
|
* are received. The two most notable transports are TCP and UDP; they are
|
|
* created and registered by routines in svc_tcp.c and svc_udp.c, respectively;
|
|
* they in turn call xprt_register and xprt_unregister.
|
|
*
|
|
* 2) An arbitrary number of locally registered services. Services are
|
|
* described by the following four data: program number, version number,
|
|
* "service dispatch" function, a transport handle, and a boolean that
|
|
* indicates whether or not the exported program should be registered with a
|
|
* local binder service; if true the program's number and version and the
|
|
* port number from the transport handle are registered with the binder.
|
|
* These data are registered with the rpc svc system via svc_register.
|
|
*
|
|
* A service's dispatch function is called whenever an rpc request comes in
|
|
* on a transport. The request's program and version numbers must match
|
|
* those of the registered service. The dispatch function is passed two
|
|
* parameters, struct svc_req * and SVCXPRT *, defined below.
|
|
*/
|
|
|
|
/*
|
|
* Service control requests
|
|
*/
|
|
#define SVCGET_VERSQUIET 1
|
|
#define SVCSET_VERSQUIET 2
|
|
#define SVCGET_CONNMAXREC 3
|
|
#define SVCSET_CONNMAXREC 4
|
|
|
|
/*
|
|
* Operations for rpc_control().
|
|
*/
|
|
#define RPC_SVC_CONNMAXREC_SET 0 /* set max rec size, enable nonblock */
|
|
#define RPC_SVC_CONNMAXREC_GET 1
|
|
|
|
enum xprt_stat {
|
|
XPRT_DIED,
|
|
XPRT_MOREREQS,
|
|
XPRT_IDLE
|
|
};
|
|
|
|
struct __rpc_svcxprt;
|
|
struct mbuf;
|
|
|
|
struct xp_ops {
|
|
/* receive incoming requests */
|
|
bool_t (*xp_recv)(struct __rpc_svcxprt *, struct rpc_msg *,
|
|
struct sockaddr **, struct mbuf **);
|
|
/* get transport status */
|
|
enum xprt_stat (*xp_stat)(struct __rpc_svcxprt *);
|
|
/* get transport acknowledge sequence */
|
|
bool_t (*xp_ack)(struct __rpc_svcxprt *, uint32_t *);
|
|
/* send reply */
|
|
bool_t (*xp_reply)(struct __rpc_svcxprt *, struct rpc_msg *,
|
|
struct sockaddr *, struct mbuf *, uint32_t *);
|
|
/* destroy this struct */
|
|
void (*xp_destroy)(struct __rpc_svcxprt *);
|
|
/* catch-all function */
|
|
bool_t (*xp_control)(struct __rpc_svcxprt *, const u_int, void *);
|
|
};
|
|
|
|
struct __rpc_svcpool;
|
|
struct __rpc_svcgroup;
|
|
struct __rpc_svcthread;
|
|
|
|
/*
|
|
* Server side transport handle. In the kernel, transports have a
|
|
* reference count which tracks the number of currently assigned
|
|
* worker threads plus one for the service pool's reference.
|
|
* For NFSv4.1 sessions, a reference is also held for a backchannel.
|
|
* xp_p2 - Points to the CLIENT structure for the RPC server end
|
|
* (the client end for callbacks).
|
|
* Points to the private structure (cl_private) for the
|
|
* CLIENT structure for the RPC client end (the server
|
|
* end for callbacks).
|
|
*/
|
|
typedef struct __rpc_svcxprt {
|
|
volatile u_int xp_refs;
|
|
struct sx xp_lock;
|
|
struct __rpc_svcpool *xp_pool; /* owning pool (see below) */
|
|
struct __rpc_svcgroup *xp_group; /* owning group (see below) */
|
|
TAILQ_ENTRY(__rpc_svcxprt) xp_link;
|
|
TAILQ_ENTRY(__rpc_svcxprt) xp_alink;
|
|
bool_t xp_registered; /* xprt_register has been called */
|
|
bool_t xp_active; /* xprt_active has been called */
|
|
struct __rpc_svcthread *xp_thread; /* assigned service thread */
|
|
struct socket* xp_socket;
|
|
const struct xp_ops *xp_ops;
|
|
char *xp_netid; /* network token */
|
|
struct sockaddr_storage xp_ltaddr; /* local transport address */
|
|
struct sockaddr_storage xp_rtaddr; /* remote transport address */
|
|
void *xp_p1; /* private: for use by svc ops */
|
|
void *xp_p2; /* private: for use by svc ops */
|
|
void *xp_p3; /* private: for use by svc lib */
|
|
int xp_type; /* transport type */
|
|
int xp_idletimeout; /* idle time before closing */
|
|
time_t xp_lastactive; /* time of last RPC */
|
|
uint64_t xp_sockref; /* set by nfsv4 to identify socket */
|
|
int xp_upcallset; /* socket upcall is set up */
|
|
uint32_t xp_snd_cnt; /* # of bytes to send to socket */
|
|
uint32_t xp_snt_cnt; /* # of bytes sent to socket */
|
|
bool_t xp_dontrcv; /* Do not receive on the socket */
|
|
uint32_t xp_tls; /* RPC-over-TLS on socket */
|
|
int xp_ngrps; /* Cred. from TLS cert. */
|
|
uid_t xp_uid;
|
|
gid_t *xp_gidp;
|
|
int xp_doneddp;
|
|
} SVCXPRT;
|
|
|
|
/*
|
|
* Interface to server-side authentication flavors.
|
|
*/
|
|
typedef struct __rpc_svcauth {
|
|
const struct svc_auth_ops {
|
|
int (*svc_ah_wrap)(struct __rpc_svcauth *, struct mbuf **);
|
|
int (*svc_ah_unwrap)(struct __rpc_svcauth *, struct mbuf **);
|
|
void (*svc_ah_release)(struct __rpc_svcauth *);
|
|
} *svc_ah_ops;
|
|
void *svc_ah_private;
|
|
} SVCAUTH;
|
|
|
|
/*
|
|
* Server transport extensions (accessed via xp_p3).
|
|
*/
|
|
typedef struct __rpc_svcxprt_ext {
|
|
int xp_flags; /* versquiet */
|
|
SVCAUTH xp_auth; /* interface to auth methods */
|
|
} SVCXPRT_EXT;
|
|
|
|
/*
|
|
* The services list
|
|
* Each entry represents a set of procedures (an rpc program).
|
|
* The dispatch routine takes request structs and runs the
|
|
* appropriate procedure.
|
|
*/
|
|
struct svc_callout {
|
|
TAILQ_ENTRY(svc_callout) sc_link;
|
|
rpcprog_t sc_prog;
|
|
rpcvers_t sc_vers;
|
|
char *sc_netid;
|
|
void (*sc_dispatch)(struct svc_req *, SVCXPRT *);
|
|
};
|
|
TAILQ_HEAD(svc_callout_list, svc_callout);
|
|
|
|
/*
|
|
* The services connection loss list
|
|
* The dispatch routine takes request structs and runs the
|
|
* appropriate procedure.
|
|
*/
|
|
struct svc_loss_callout {
|
|
TAILQ_ENTRY(svc_loss_callout) slc_link;
|
|
void (*slc_dispatch)(SVCXPRT *);
|
|
};
|
|
TAILQ_HEAD(svc_loss_callout_list, svc_loss_callout);
|
|
|
|
/*
|
|
* Service request
|
|
*/
|
|
struct svc_req {
|
|
STAILQ_ENTRY(svc_req) rq_link; /* list of requests for a thread */
|
|
struct __rpc_svcthread *rq_thread; /* thread which is to execute this */
|
|
uint32_t rq_xid; /* RPC transaction ID */
|
|
uint32_t rq_prog; /* service program number */
|
|
uint32_t rq_vers; /* service protocol version */
|
|
uint32_t rq_proc; /* the desired procedure */
|
|
size_t rq_size; /* space used by request */
|
|
struct mbuf *rq_args; /* XDR-encoded procedure arguments */
|
|
struct opaque_auth rq_cred; /* raw creds from the wire */
|
|
struct opaque_auth rq_verf; /* verifier for the reply */
|
|
void *rq_clntcred; /* read only cooked cred */
|
|
SVCAUTH rq_auth; /* interface to auth methods */
|
|
SVCXPRT *rq_xprt; /* associated transport */
|
|
struct sockaddr *rq_addr; /* reply address or NULL if connected */
|
|
void *rq_p1; /* application workspace */
|
|
int rq_p2; /* application workspace */
|
|
uint64_t rq_p3; /* application workspace */
|
|
uint32_t rq_reply_seq; /* reply socket sequence # */
|
|
char rq_credarea[3*MAX_AUTH_BYTES];
|
|
};
|
|
STAILQ_HEAD(svc_reqlist, svc_req);
|
|
|
|
#define svc_getrpccaller(rq) \
|
|
((rq)->rq_addr ? (rq)->rq_addr : \
|
|
(struct sockaddr *) &(rq)->rq_xprt->xp_rtaddr)
|
|
|
|
/*
|
|
* This structure is used to manage a thread which is executing
|
|
* requests from a service pool. A service thread is in one of three
|
|
* states:
|
|
*
|
|
* SVCTHREAD_SLEEPING waiting for a request to process
|
|
* SVCTHREAD_ACTIVE processing a request
|
|
* SVCTHREAD_EXITING exiting after finishing current request
|
|
*
|
|
* Threads which have no work to process sleep on the pool's sp_active
|
|
* list. When a transport becomes active, it is assigned a service
|
|
* thread to read and execute pending RPCs.
|
|
*/
|
|
typedef struct __rpc_svcthread {
|
|
struct mtx_padalign st_lock; /* protects st_reqs field */
|
|
struct __rpc_svcpool *st_pool;
|
|
SVCXPRT *st_xprt; /* transport we are processing */
|
|
struct svc_reqlist st_reqs; /* RPC requests to execute */
|
|
struct cv st_cond; /* sleeping for work */
|
|
LIST_ENTRY(__rpc_svcthread) st_ilink; /* idle threads list */
|
|
LIST_ENTRY(__rpc_svcthread) st_alink; /* application thread list */
|
|
int st_p2; /* application workspace */
|
|
uint64_t st_p3; /* application workspace */
|
|
} SVCTHREAD;
|
|
LIST_HEAD(svcthread_list, __rpc_svcthread);
|
|
|
|
/*
|
|
* A thread group contain all information needed to assign subset of
|
|
* transports to subset of threads. On systems with many CPUs and many
|
|
* threads that allows to reduce lock congestion and improve performance.
|
|
* Hundreds of threads on dozens of CPUs sharing the single pool lock do
|
|
* not scale well otherwise.
|
|
*/
|
|
TAILQ_HEAD(svcxprt_list, __rpc_svcxprt);
|
|
enum svcpool_state {
|
|
SVCPOOL_INIT, /* svc_run not called yet */
|
|
SVCPOOL_ACTIVE, /* normal running state */
|
|
SVCPOOL_THREADWANTED, /* new service thread requested */
|
|
SVCPOOL_THREADSTARTING, /* new service thread started */
|
|
SVCPOOL_CLOSING /* svc_exit called */
|
|
};
|
|
typedef struct __rpc_svcgroup {
|
|
struct mtx_padalign sg_lock; /* protect the thread/req lists */
|
|
struct __rpc_svcpool *sg_pool;
|
|
enum svcpool_state sg_state; /* current pool state */
|
|
struct svcxprt_list sg_xlist; /* all transports in the group */
|
|
struct svcxprt_list sg_active; /* transports needing service */
|
|
struct svcthread_list sg_idlethreads; /* idle service threads */
|
|
|
|
int sg_minthreads; /* minimum service thread count */
|
|
int sg_maxthreads; /* maximum service thread count */
|
|
int sg_threadcount; /* current service thread count */
|
|
time_t sg_lastcreatetime; /* when we last started a thread */
|
|
time_t sg_lastidlecheck; /* when we last checked idle transports */
|
|
} SVCGROUP;
|
|
|
|
/*
|
|
* In the kernel, we can't use global variables to store lists of
|
|
* transports etc. since otherwise we could not have two unrelated RPC
|
|
* services running, each on its own thread. We solve this by
|
|
* importing a tiny part of a Solaris kernel concept, SVCPOOL.
|
|
*
|
|
* A service pool contains a set of transports and service callbacks
|
|
* for a set of related RPC services. The pool handle should be passed
|
|
* when creating new transports etc. Future work may include extending
|
|
* this to support something similar to the Solaris multi-threaded RPC
|
|
* server.
|
|
*/
|
|
typedef SVCTHREAD *pool_assign_fn(SVCTHREAD *, struct svc_req *);
|
|
typedef void pool_done_fn(SVCTHREAD *, struct svc_req *);
|
|
#define SVC_MAXGROUPS 16
|
|
typedef struct __rpc_svcpool {
|
|
struct mtx_padalign sp_lock; /* protect the transport lists */
|
|
const char *sp_name; /* pool name (e.g. "nfsd", "NLM" */
|
|
enum svcpool_state sp_state; /* current pool state */
|
|
struct proc *sp_proc; /* process which is in svc_run */
|
|
struct svc_callout_list sp_callouts; /* (prog,vers)->dispatch list */
|
|
struct svc_loss_callout_list sp_lcallouts; /* loss->dispatch list */
|
|
int sp_minthreads; /* minimum service thread count */
|
|
int sp_maxthreads; /* maximum service thread count */
|
|
|
|
/*
|
|
* Hooks to allow an application to control request to thread
|
|
* placement.
|
|
*/
|
|
pool_assign_fn *sp_assign;
|
|
pool_done_fn *sp_done;
|
|
|
|
/*
|
|
* These variables are used to put an upper bound on the
|
|
* amount of memory used by RPC requests which are queued
|
|
* waiting for execution.
|
|
*/
|
|
unsigned long sp_space_low;
|
|
unsigned long sp_space_high;
|
|
unsigned long sp_space_used;
|
|
unsigned long sp_space_used_highest;
|
|
bool_t sp_space_throttled;
|
|
int sp_space_throttle_count;
|
|
|
|
struct replay_cache *sp_rcache; /* optional replay cache */
|
|
struct sysctl_ctx_list sp_sysctl;
|
|
|
|
int sp_groupcount; /* Number of groups in the pool. */
|
|
int sp_nextgroup; /* Next group to assign port. */
|
|
SVCGROUP sp_groups[SVC_MAXGROUPS]; /* Thread/port groups. */
|
|
} SVCPOOL;
|
|
|
|
/*
|
|
* Operations defined on an SVCXPRT handle
|
|
*
|
|
* SVCXPRT *xprt;
|
|
* struct rpc_msg *msg;
|
|
* xdrproc_t xargs;
|
|
* void * argsp;
|
|
*/
|
|
#define SVC_ACQUIRE(xprt) \
|
|
refcount_acquire(&(xprt)->xp_refs)
|
|
|
|
#define SVC_RELEASE(xprt) \
|
|
if (refcount_release(&(xprt)->xp_refs)) \
|
|
SVC_DESTROY(xprt)
|
|
|
|
#define SVC_RECV(xprt, msg, addr, args) \
|
|
(*(xprt)->xp_ops->xp_recv)((xprt), (msg), (addr), (args))
|
|
|
|
#define SVC_STAT(xprt) \
|
|
(*(xprt)->xp_ops->xp_stat)(xprt)
|
|
|
|
#define SVC_ACK(xprt, ack) \
|
|
((xprt)->xp_ops->xp_ack == NULL ? FALSE : \
|
|
((ack) == NULL ? TRUE : (*(xprt)->xp_ops->xp_ack)((xprt), (ack))))
|
|
|
|
#define SVC_REPLY(xprt, msg, addr, m, seq) \
|
|
(*(xprt)->xp_ops->xp_reply) ((xprt), (msg), (addr), (m), (seq))
|
|
|
|
#define SVC_DESTROY(xprt) \
|
|
(*(xprt)->xp_ops->xp_destroy)(xprt)
|
|
|
|
#define SVC_CONTROL(xprt, rq, in) \
|
|
(*(xprt)->xp_ops->xp_control)((xprt), (rq), (in))
|
|
|
|
#define SVC_EXT(xprt) \
|
|
((SVCXPRT_EXT *) xprt->xp_p3)
|
|
|
|
#define SVC_AUTH(xprt) \
|
|
(SVC_EXT(xprt)->xp_auth)
|
|
|
|
/*
|
|
* Operations defined on an SVCAUTH handle
|
|
*/
|
|
#define SVCAUTH_WRAP(auth, mp) \
|
|
((auth)->svc_ah_ops->svc_ah_wrap(auth, mp))
|
|
#define SVCAUTH_UNWRAP(auth, mp) \
|
|
((auth)->svc_ah_ops->svc_ah_unwrap(auth, mp))
|
|
#define SVCAUTH_RELEASE(auth) \
|
|
((auth)->svc_ah_ops->svc_ah_release(auth))
|
|
|
|
/*
|
|
* Service registration
|
|
*
|
|
* svc_reg(xprt, prog, vers, dispatch, nconf)
|
|
* const SVCXPRT *xprt;
|
|
* const rpcprog_t prog;
|
|
* const rpcvers_t vers;
|
|
* const void (*dispatch)();
|
|
* const struct netconfig *nconf;
|
|
*/
|
|
|
|
__BEGIN_DECLS
|
|
extern bool_t svc_reg(SVCXPRT *, const rpcprog_t, const rpcvers_t,
|
|
void (*)(struct svc_req *, SVCXPRT *),
|
|
const struct netconfig *);
|
|
__END_DECLS
|
|
|
|
/*
|
|
* Service un-registration
|
|
*
|
|
* svc_unreg(prog, vers)
|
|
* const rpcprog_t prog;
|
|
* const rpcvers_t vers;
|
|
*/
|
|
|
|
__BEGIN_DECLS
|
|
extern void svc_unreg(SVCPOOL *, const rpcprog_t, const rpcvers_t);
|
|
__END_DECLS
|
|
|
|
/*
|
|
* Service connection loss registration
|
|
*
|
|
* svc_loss_reg(xprt, dispatch)
|
|
* const SVCXPRT *xprt;
|
|
* const void (*dispatch)();
|
|
*/
|
|
|
|
__BEGIN_DECLS
|
|
extern bool_t svc_loss_reg(SVCXPRT *, void (*)(SVCXPRT *));
|
|
__END_DECLS
|
|
|
|
/*
|
|
* Service connection loss un-registration
|
|
*
|
|
* svc_loss_unreg(xprt, dispatch)
|
|
* const SVCXPRT *xprt;
|
|
* const void (*dispatch)();
|
|
*/
|
|
|
|
__BEGIN_DECLS
|
|
extern void svc_loss_unreg(SVCPOOL *, void (*)(SVCXPRT *));
|
|
__END_DECLS
|
|
|
|
/*
|
|
* Transport registration.
|
|
*
|
|
* xprt_register(xprt)
|
|
* SVCXPRT *xprt;
|
|
*/
|
|
__BEGIN_DECLS
|
|
extern void xprt_register(SVCXPRT *);
|
|
__END_DECLS
|
|
|
|
/*
|
|
* Transport un-register
|
|
*
|
|
* xprt_unregister(xprt)
|
|
* SVCXPRT *xprt;
|
|
*/
|
|
__BEGIN_DECLS
|
|
extern void xprt_unregister(SVCXPRT *);
|
|
extern void __xprt_unregister_unlocked(SVCXPRT *);
|
|
__END_DECLS
|
|
|
|
/*
|
|
* Called when a transport has pending requests.
|
|
*/
|
|
__BEGIN_DECLS
|
|
extern void xprt_active(SVCXPRT *);
|
|
extern void xprt_inactive(SVCXPRT *);
|
|
extern void xprt_inactive_locked(SVCXPRT *);
|
|
extern void xprt_inactive_self(SVCXPRT *);
|
|
__END_DECLS
|
|
|
|
/*
|
|
* When the service routine is called, it must first check to see if it
|
|
* knows about the procedure; if not, it should call svcerr_noproc
|
|
* and return. If so, it should deserialize its arguments via
|
|
* SVC_GETARGS (defined above). If the deserialization does not work,
|
|
* svcerr_decode should be called followed by a return. Successful
|
|
* decoding of the arguments should be followed the execution of the
|
|
* procedure's code and a call to svc_sendreply.
|
|
*
|
|
* Also, if the service refuses to execute the procedure due to too-
|
|
* weak authentication parameters, svcerr_weakauth should be called.
|
|
* Note: do not confuse access-control failure with weak authentication!
|
|
*
|
|
* NB: In pure implementations of rpc, the caller always waits for a reply
|
|
* msg. This message is sent when svc_sendreply is called.
|
|
* Therefore pure service implementations should always call
|
|
* svc_sendreply even if the function logically returns void; use
|
|
* xdr.h - xdr_void for the xdr routine. HOWEVER, tcp based rpc allows
|
|
* for the abuse of pure rpc via batched calling or pipelining. In the
|
|
* case of a batched call, svc_sendreply should NOT be called since
|
|
* this would send a return message, which is what batching tries to avoid.
|
|
* It is the service/protocol writer's responsibility to know which calls are
|
|
* batched and which are not. Warning: responding to batch calls may
|
|
* deadlock the caller and server processes!
|
|
*/
|
|
|
|
__BEGIN_DECLS
|
|
extern bool_t svc_sendreply(struct svc_req *, xdrproc_t, void *);
|
|
extern bool_t svc_sendreply_mbuf(struct svc_req *, struct mbuf *);
|
|
extern void svcerr_decode(struct svc_req *);
|
|
extern void svcerr_weakauth(struct svc_req *);
|
|
extern void svcerr_noproc(struct svc_req *);
|
|
extern void svcerr_progvers(struct svc_req *, rpcvers_t, rpcvers_t);
|
|
extern void svcerr_auth(struct svc_req *, enum auth_stat);
|
|
extern void svcerr_noprog(struct svc_req *);
|
|
extern void svcerr_systemerr(struct svc_req *);
|
|
extern int rpc_reg(rpcprog_t, rpcvers_t, rpcproc_t,
|
|
char *(*)(char *), xdrproc_t, xdrproc_t,
|
|
char *);
|
|
__END_DECLS
|
|
|
|
/*
|
|
* Lowest level dispatching -OR- who owns this process anyway.
|
|
* Somebody has to wait for incoming requests and then call the correct
|
|
* service routine. The routine svc_run does infinite waiting; i.e.,
|
|
* svc_run never returns.
|
|
* Since another (co-existent) package may wish to selectively wait for
|
|
* incoming calls or other events outside of the rpc architecture, the
|
|
* routine svc_getreq is provided. It must be passed readfds, the
|
|
* "in-place" results of a select system call (see select, section 2).
|
|
*/
|
|
|
|
/*
|
|
* a small program implemented by the svc_rpc implementation itself;
|
|
* also see clnt.h for protocol numbers.
|
|
*/
|
|
__BEGIN_DECLS
|
|
extern void rpctest_service(void);
|
|
__END_DECLS
|
|
|
|
__BEGIN_DECLS
|
|
extern SVCXPRT *svc_xprt_alloc(void);
|
|
extern void svc_xprt_free(SVCXPRT *);
|
|
extern void svc_run(SVCPOOL *);
|
|
extern void svc_exit(SVCPOOL *);
|
|
extern bool_t svc_getargs(struct svc_req *, xdrproc_t, void *);
|
|
extern bool_t svc_freeargs(struct svc_req *, xdrproc_t, void *);
|
|
extern void svc_freereq(struct svc_req *);
|
|
__END_DECLS
|
|
|
|
/*
|
|
* Socket to use on svcxxx_create call to get default socket
|
|
*/
|
|
#define RPC_ANYSOCK -1
|
|
#define RPC_ANYFD RPC_ANYSOCK
|
|
|
|
/*
|
|
* These are the existing service side transport implementations
|
|
*/
|
|
|
|
__BEGIN_DECLS
|
|
|
|
/*
|
|
* Create a new service pool.
|
|
*/
|
|
extern SVCPOOL* svcpool_create(const char *name,
|
|
struct sysctl_oid_list *sysctl_base);
|
|
|
|
/*
|
|
* Destroy a service pool, including all registered transports.
|
|
*/
|
|
extern void svcpool_destroy(SVCPOOL *pool);
|
|
|
|
/*
|
|
* Close a service pool. Similar to svcpool_destroy(), but it does not
|
|
* free the data structures. As such, the pool can be used again.
|
|
*/
|
|
extern void svcpool_close(SVCPOOL *pool);
|
|
|
|
/*
|
|
* Generic server creation routine. It takes a netconfig structure
|
|
* instead of a nettype.
|
|
*/
|
|
|
|
extern SVCXPRT *svc_tp_create(SVCPOOL *, void (*)(struct svc_req *, SVCXPRT *),
|
|
const rpcprog_t, const rpcvers_t, const char *uaddr,
|
|
const struct netconfig *);
|
|
/*
|
|
* void (*dispatch)(); -- dispatch routine
|
|
* const rpcprog_t prognum; -- program number
|
|
* const rpcvers_t versnum; -- version number
|
|
* const char *uaddr; -- universal address of service
|
|
* const struct netconfig *nconf; -- netconfig structure
|
|
*/
|
|
|
|
extern SVCXPRT *svc_dg_create(SVCPOOL *, struct socket *,
|
|
const size_t, const size_t);
|
|
/*
|
|
* struct socket *; -- open connection
|
|
* const size_t sendsize; -- max send size
|
|
* const size_t recvsize; -- max recv size
|
|
*/
|
|
|
|
extern SVCXPRT *svc_vc_create(SVCPOOL *, struct socket *,
|
|
const size_t, const size_t);
|
|
/*
|
|
* struct socket *; -- open connection
|
|
* const size_t sendsize; -- max send size
|
|
* const size_t recvsize; -- max recv size
|
|
*/
|
|
|
|
extern SVCXPRT *svc_vc_create_backchannel(SVCPOOL *);
|
|
|
|
extern void *clnt_bck_create(struct socket *, const rpcprog_t, const rpcvers_t);
|
|
/*
|
|
* struct socket *; -- server transport socket
|
|
* const rpcprog_t prog; -- RPC program number
|
|
* const rpcvers_t vers; -- RPC program version
|
|
*/
|
|
|
|
/*
|
|
* Generic TLI create routine
|
|
*/
|
|
extern SVCXPRT *svc_tli_create(SVCPOOL *, const struct netconfig *,
|
|
const struct t_bind *, const size_t, const size_t);
|
|
/*
|
|
* const struct netconfig *nconf; -- netconfig structure for network
|
|
* const struct t_bind *bindaddr; -- local bind address
|
|
* const size_t sendsz; -- max sendsize
|
|
* const size_t recvsz; -- max recvsize
|
|
*/
|
|
__END_DECLS
|
|
|
|
#endif /* !_RPC_SVC_H */
|